Abstract:Spatio-temporal area-level datasets play a critical role in official statistics, providing valuable insights for policy-making and regional planning. Accurate modeling and forecasting of these datasets can be extremely useful for policymakers to develop informed strategies for future planning. Echo State Networks (ESNs) are efficient methods for capturing nonlinear temporal dynamics and generating forecasts. However, ESNs lack a direct mechanism to account for the neighborhood structure inherent in area-level data. Ignoring these spatial relationships can significantly compromise the accuracy and utility of forecasts. In this paper, we incorporate approximate graph spectral filters at the input stage of the ESN, thereby improving forecast accuracy while preserving the model's computational efficiency during training. We demonstrate the effectiveness of our approach using Eurostat's tourism occupancy dataset and show how it can support more informed decision-making in policy and planning contexts.
Abstract:Time series classification using novel techniques has experienced a recent resurgence and growing interest from statisticians, subject-domain scientists, and decision makers in business and industry. This is primarily due to the ever increasing amount of big and complex data produced as a result of technological advances. A motivating example is that of Google trends data, which exhibit highly nonlinear behavior. Although a rich literature exists for addressing this problem, existing approaches mostly rely on first and second order properties of the time series, since they typically assume linearity of the underlying process. Often, these are inadequate for effective classification of nonlinear time series data such as Google Trends data. Given these methodological deficiencies and the abundance of nonlinear time series that persist among real-world phenomena, we introduce an approach that merges higher order spectral analysis (HOSA) with deep convolutional neural networks (CNNs) for classifying time series. The effectiveness of our approach is illustrated using simulated data and two motivating industry examples that involve Google trends data and electronic device energy consumption data.