Abstract:Knowledge distillation (KD) improves the performance of a low-complexity student model with the help of a more powerful teacher. The teacher in KD is a black-box model, imparting knowledge to the student only through its predictions. This limits the amount of transferred knowledge. In this work, we introduce a novel Knowledge Explaining Distillation (KED) framework, which allows the student to learn not only from the teacher's predictions but also from the teacher's explanations. We propose a class of superfeature-explaining teachers that provide explanation over groups of features, along with the corresponding student model. We also present a method for constructing the superfeatures. We then extend KED to reduce complexity in convolutional neural networks, to allow augmentation with hidden-representation distillation methods, and to work with a limited amount of training data using chimeric sets. Our experiments over a variety of datasets show that KED students can substantially outperform KD students of similar complexity.
Abstract:Network traffic classification using machine learning techniques has been widely studied. Most existing schemes classify entire traffic flows, but there are major limitations to their practicality. At a network router, the packets need to be processed with minimum delay, so the classifier cannot wait until the end of the flow to make a decision. Furthermore, a complicated machine learning algorithm can be too computationally expensive to implement inside the router. In this paper, we introduce flow-packet hybrid traffic classification (FPHTC), where the router makes a decision per packet based on a routing policy that is designed through transferring the learned knowledge from a flow-based classifier residing outside the router. We analyze the generalization bound of FPHTC and show its advantage over regular packet-based traffic classification. We present experimental results using a real-world traffic dataset to illustrate the classification performance of FPHTC. We show that it is robust toward traffic pattern changes and can be deployed with limited computational resource.