Abstract:In this work we propose a Visual Mamba (ViM) based architecture, to dissolve the existing trade-off for real-time and accurate model with low computation overhead for disparity map generation (DMG). Moreover, we proposed a performance measure that can jointly evaluate the inference speed, computation overhead and the accurateness of a DMG model.
Abstract:In this work, we attempted to extend the thought and showcase a way forward for the Self-supervised Learning (SSL) learning paradigm by combining contrastive learning, self-distillation (knowledge distillation) and masked data modelling, the three major SSL frameworks, to learn a joint and coordinated representation. The proposed technique of SSL learns by the collaborative power of different learning objectives of SSL. Hence to jointly learn the different SSL objectives we proposed a new SSL architecture KDC-MAE, a complementary masking strategy to learn the modular correspondence, and a weighted way to combine them coordinately. Experimental results conclude that the contrastive masking correspondence along with the KD learning objective has lent a hand to performing better learning for multiple modalities over multiple tasks.
Abstract:This work proposes a novel process of using pen tip and tail 3D trajectory for air signature. To acquire the trajectories we developed a new pen tool and a stereo camera was used. We proposed SliT-CNN, a novel 2D spatial-temporal convolutional neural network (CNN) for better featuring of the air signature. In addition, we also collected an air signature dataset from $45$ signers. Skilled forgery signatures per user are also collected. A detailed benchmarking of the proposed dataset using existing techniques and proposed CNN on existing and proposed dataset exhibit the effectiveness of our methodology.