Abstract:Several robotic frameworks have been recently developed to assist ophthalmic surgeons in performing complex vitreoretinal procedures such as subretinal injection of advanced therapeutics. These surgical robots show promising capabilities; however, most of them have to limit their working volume to achieve maximum accuracy. Moreover, the visible area seen through the surgical microscope is limited and solely depends on the eye posture. If the eye posture, trocar position, and robot configuration are not correctly arranged, the instrument may not reach the target position, and the preparation will have to be redone. Therefore, this paper proposes the optimization framework of the eye tilting and the robot positioning to reach various target areas for different patients. Our method was validated with an adjustable phantom eye model, and the error of this workflow was 0.13 +/- 1.65 deg (rotational joint around Y axis), -1.40 +/- 1.13 deg (around X axis), and 1.80 +/- 1.51 mm (depth, Z). The potential error sources are also analyzed in the discussion section.