Abstract:The number of malware is constantly on the rise. Though most new malware are modifications of existing ones, their sheer number is quite overwhelming. In this paper, we present a novel system to visualize and map millions of malware to points in a 2-dimensional (2D) spatial grid. This enables visualizing relationships within large malware datasets that can be used to develop triage solutions to screen different malware rapidly and provide situational awareness. Our approach links two visualizations within an interactive display. Our first view is a spatial point-based visualization of similarity among the samples based on a reduced dimensional projection of binary feature representations of malware. Our second spatial grid-based view provides a better insight into similarities and differences between selected malware samples in terms of the binary-based visual representations they share. We also provide a case study where the effect of packing on the malware data is correlated with the complexity of the packing algorithm.
Abstract:With the growing number of malware and cyber attacks, there is a need for "orthogonal" cyber defense approaches, which are complementary to existing methods by detecting unique malware samples that are not predicted by other methods. In this paper, we propose a novel and orthogonal malware detection (OMD) approach to identify malware using a combination of audio descriptors, image similarity descriptors and other static/statistical features. First, we show how audio descriptors are effective in classifying malware families when the malware binaries are represented as audio signals. Then, we show that the predictions made on the audio descriptors are orthogonal to the predictions made on image similarity descriptors and other static features. Further, we develop a framework for error analysis and a metric to quantify how orthogonal a new feature set (or type) is with respect to other feature sets. This allows us to add new features and detection methods to our overall framework. Experimental results on malware datasets show that our approach provides a robust framework for orthogonal malware detection.
Abstract:Malicious PDF documents present a serious threat to various security organizations that require modern threat intelligence platforms to effectively analyze and characterize the identity and behavior of PDF malware. State-of-the-art approaches use machine learning (ML) to learn features that characterize PDF malware. However, ML models are often susceptible to evasion attacks, in which an adversary obfuscates the malware code to avoid being detected by an Antivirus. In this paper, we derive a simple yet effective holistic approach to PDF malware detection that leverages signal and statistical analysis of malware binaries. This includes combining orthogonal feature space models from various static and dynamic malware detection methods to enable generalized robustness when faced with code obfuscations. Using a dataset of nearly 30,000 PDF files containing both malware and benign samples, we show that our holistic approach maintains a high detection rate (99.92%) of PDF malware and even detects new malicious files created by simple methods that remove the obfuscation conducted by malware authors to hide their malware, which are undetected by most antiviruses.
Abstract:We propose a novel method to detect and visualize malware through image classification. The executable binaries are represented as grayscale images obtained from the count of N-grams (N=2) of bytes in the Discrete Cosine Transform (DCT) domain and a neural network is trained for malware detection. A shallow neural network is trained for classification, and its accuracy is compared with deep-network architectures such as ResNet that are trained using transfer learning. Neither dis-assembly nor behavioral analysis of malware is required for these methods. Motivated by the visual similarity of these images for different malware families, we compare our deep neural network models with standard image features like GIST descriptors to evaluate the performance. A joint feature measure is proposed to combine different features using error analysis to get an accurate ensemble model for improved classification performance. A new dataset called MaleX which contains around 1 million malware and benign Windows executable samples is created for large-scale malware detection and classification experiments. Experimental results are quite promising with 96% binary classification accuracy on MaleX. The proposed model is also able to generalize well on larger unseen malware samples and the results compare favorably with state-of-the-art static analysis-based malware detection algorithms.