Abstract:Cultural differences in common ground may result in pragmatic failure and misunderstandings during communication. We develop our method Rational Speech Acts for Cross-Cultural Communication (RSA+C3) to resolve cross-cultural differences in common ground. To measure the success of our method, we study RSA+C3 in the collaborative referential game of Codenames Duet and show that our method successfully improves collaboration between simulated players of different cultures. Our contributions are threefold: (1) creating Codenames players using contrastive learning of an embedding space and LLM prompting that are aligned with human patterns of play, (2) studying culturally induced differences in common ground reflected in our trained models, and (3) demonstrating that our method RSA+C3 can ease cross-cultural communication in gameplay by inferring sociocultural context from interaction. Our code is publicly available at github.com/icwhite/codenames.
Abstract:When querying a large language model (LLM), the context, i.e. personal, demographic, and cultural information specific to an end-user, can significantly shape the response of the LLM. For example, asking the model to explain Newton's second law with the context "I am a toddler" yields a different answer compared to the context "I am a physics professor." Proper usage of the context enables the LLM to generate personalized responses, whereas inappropriate contextual influence can lead to stereotypical and potentially harmful generations (e.g. associating "female" with "housekeeper"). In practice, striking the right balance when leveraging context is a nuanced and challenging problem that is often situation-dependent. One common approach to address this challenge is to fine-tune LLMs on contextually appropriate responses. However, this approach is expensive, time-consuming, and not controllable for end-users in different situations. In this work, we propose Context Steering (CoS) - a simple training-free method that can be easily applied to autoregressive LLMs at inference time. By measuring the contextual influence in terms of token prediction likelihood and modulating it, our method enables practitioners to determine the appropriate level of contextual influence based on their specific use case and end-user base. We showcase a variety of applications of CoS including amplifying the contextual influence to achieve better personalization and mitigating unwanted influence for reducing model bias. In addition, we show that we can combine CoS with Bayesian Inference to quantify the extent of hate speech on the internet. We demonstrate the effectiveness of CoS on state-of-the-art LLMs and benchmarks.