Abstract:Prompting has emerged as the dominant paradigm for adapting large, pre-trained transformer-based models to downstream tasks. The Prompting Decision Transformer (PDT) enables large-scale, multi-task offline reinforcement learning pre-training by leveraging stochastic trajectory prompts to identify the target task. However, these prompts are sampled uniformly from expert demonstrations, overlooking a critical limitation: Not all prompts are equally informative for differentiating between tasks. To address this, we propose an inference time bandit-based prompt-tuning framework that explores and optimizes trajectory prompt selection to enhance task performance. Our experiments indicate not only clear performance gains due to bandit-based prompt-tuning, but also better sample complexity, scalability, and prompt space exploration compared to prompt-tuning baselines.
Abstract:Harnessing large offline datasets is vital for training foundation models that can generalize across diverse tasks. Offline Reinforcement Learning (RL) offers a powerful framework for these scenarios, enabling the derivation of optimal policies even from suboptimal data. The Prompting Decision Transformer (PDT) is an offline RL multi-task model that distinguishes tasks through stochastic trajectory prompts, which are task-specific tokens maintained in context during rollouts. However, PDT samples these tokens uniformly at random from per-task demonstration datasets, failing to account for differences in token informativeness and potentially leading to performance degradation. To address this limitation, we introduce a scalable bandit-based prompt-tuning method that dynamically learns to construct high-performance trajectory prompts. Our approach significantly enhances downstream task performance without modifying the pre-trained Transformer backbone. Empirical results on benchmark tasks and a newly designed multi-task environment demonstrate the effectiveness of our method, creating a seamless bridge between general multi-task offline pre-training and task-specific online adaptation.