Abstract:In recent years, an association is established between faces and voices of celebrities leveraging large scale audio-visual information from YouTube. The availability of large scale audio-visual datasets is instrumental in developing speaker recognition methods based on standard Convolutional Neural Networks. Thus, the aim of this paper is to leverage large scale audio-visual information to improve speaker recognition task. To achieve this task, we proposed a two-branch network to learn joint representations of faces and voices in a multimodal system. Afterwards, features are extracted from the two-branch network to train a classifier for speaker recognition. We evaluated our proposed framework on a large scale audio-visual dataset named VoxCeleb$1$. Our results show that addition of facial information improved the performance of speaker recognition. Moreover, our results indicate that there is an overlap between face and voice.