Abstract:The Internet-of-Things (IoT) is rapidly expanding, connecting numerous devices and becoming integral to our daily lives. As this occurs, ensuring efficient traffic management becomes crucial. Effective IoT traffic management requires modeling and predicting intrincate machine-type communication (MTC) dynamics, for which machine-learning (ML) techniques are certainly appealing. However, obtaining comprehensive and high-quality datasets, along with accessible platforms for reproducing ML-based predictions, continues to impede the research progress. In this paper, we aim to fill this gap by characterizing the Smart Campus MTC dataset provided by the University of Oulu. Specifically, we perform a comprehensive statistical analysis of the MTC traffic utilizing goodness-of-fit tests, including well-established tests such as Kolmogorov-Smirnov, Anderson-Darling, chi-squared, and root mean square error. The analysis centers on examining and evaluating three models that accurately represent the two most significant MTC traffic types: periodic updating and event-driven, which are also identified from the dataset. The results demonstrate that the models accurately characterize the traffic patterns. The Poisson point process model exhibits the best fit for event-driven patterns with errors below 11%, while the quasi-periodic model fits accurately the periodic updating traffic with errors below 7%.
Abstract:Prolonging the lifetime of massive machine-type communication (MTC) networks is key to realizing a sustainable digitized society. Great energy savings can be achieved by accurately predicting MTC traffic followed by properly designed resource allocation mechanisms. However, selecting the proper MTC traffic predictor is not straightforward and depends on accuracy/complexity trade-offs and the specific MTC applications and network characteristics. Remarkably, the related state-of-the-art literature still lacks such debates. Herein, we assess the performance of several machine learning (ML) methods to predict Poisson and quasi-periodic MTC traffic in terms of accuracy and computational cost. Results show that the temporal convolutional network (TCN) outperforms the long-short term memory (LSTM), the gated recurrent units (GRU), and the recurrent neural network (RNN), in that order. For Poisson traffic, the accuracy gap between the predictors is larger than under quasi-periodic traffic. Finally, we show that running a TCN predictor is around three times more costly than other methods, while the training/inference time is the greatest/least.