Abstract:Keystroke biometrics is a promising approach for user identification and verification, leveraging the unique patterns in individuals' typing behavior. In this paper, we propose a Transformer-based network that employs self-attention to extract informative features from keystroke sequences, surpassing the performance of traditional Recurrent Neural Networks. We explore two distinct architectures, namely bi-encoder and cross-encoder, and compare their effectiveness in keystroke authentication. Furthermore, we investigate different loss functions, including triplet, batch-all triplet, and WDCL loss, along with various distance metrics such as Euclidean, Manhattan, and cosine distances. These experiments allow us to optimize the training process and enhance the performance of our model. To evaluate our proposed model, we employ the Aalto desktop keystroke dataset. The results demonstrate that the bi-encoder architecture with batch-all triplet loss and cosine distance achieves the best performance, yielding an exceptional Equal Error Rate of 0.0186%. Furthermore, alternative algorithms for calculating similarity scores are explored to enhance accuracy. Notably, the utilization of a one-class Support Vector Machine reduces the Equal Error Rate to an impressive 0.0163%. The outcomes of this study indicate that our model surpasses the previous state-of-the-art in free-text keystroke authentication. These findings contribute to advancing the field of keystroke authentication and offer practical implications for secure user verification systems.
Abstract:Handwriting recognition is a challenging and critical problem in the fields of pattern recognition and machine learning, with applications spanning a wide range of domains. In this paper, we focus on the specific issue of recognizing offline Arabic handwritten text. Existing approaches typically utilize a combination of convolutional neural networks for image feature extraction and recurrent neural networks for temporal modeling, with connectionist temporal classification used for text generation. However, these methods suffer from a lack of parallelization due to the sequential nature of recurrent neural networks. Furthermore, these models cannot account for linguistic rules, necessitating the use of an external language model in the post-processing stage to boost accuracy. To overcome these issues, we introduce two alternative architectures, namely the Transformer Transducer and the standard sequence-to-sequence Transformer, and compare their performance in terms of accuracy and speed. Our approach can model language dependencies and relies only on the attention mechanism, thereby making it more parallelizable and less complex. We employ pre-trained Transformers for both image understanding and language modeling. Our evaluation on the Arabic KHATT dataset demonstrates that our proposed method outperforms the current state-of-the-art approaches for recognizing offline Arabic handwritten text.