Abstract:The focus of this paper is to increase our understanding of the Longest Processing Time First (LPT) heuristic. LPT is a classical heuristic for the fundamental problem of uniform machine scheduling. For different machine speeds, LPT was first considered by Gonzalez et al (SIAM J. Computing, 1977). Since then, extensive work has been done to improve the approximation factor of the LPT heuristic. However, all known implementations of the LPT heuristic take $O(mn)$ time, where $m$ is the number of machines and $n$ is the number of jobs. In this work, we come up with the first near-linear time implementation for LPT. Specifically, the running time is $O((n+m)(\log^2{m}+\log{n}))$. Somewhat surprisingly, the result is obtained by mapping the problem to dynamic maintenance of lower envelope of lines, which has been well studied in the computational geometry community. Our second contribution is to analyze the performance of LPT for the Drones Warehouse Problem (DWP), which is a natural generalization of the uniform machine scheduling problem motivated by drone-based parcel delivery from a warehouse. In this problem, a warehouse has multiple drones and wants to deliver parcels to several customers. Each drone picks a parcel from the warehouse, delivers it, and returns to the warehouse (where it can also get charged). The speeds and battery lives of the drones could be different, and due to the limited battery life, each drone has a bounded range in which it can deliver parcels. The goal is to assign parcels to the drones so that the time taken to deliver all the parcels is minimized. We prove that the natural approach of solving this problem via the LPT heuristic has an approximation factor of $\phi$, where $\phi \approx 1.62$ is the golden ratio.
Abstract:This paper studies a multi-armed bandit (MAB) version of the range-searching problem. In its basic form, range searching considers as input a set of points (on the real line) and a collection of (real) intervals. Here, with each specified point, we have an associated weight, and the problem objective is to find a maximum-weight point within every given interval. The current work addresses range searching with stochastic weights: each point corresponds to an arm (that admits sample access) and the point's weight is the (unknown) mean of the underlying distribution. In this MAB setup, we develop sample-efficient algorithms that find, with high probability, near-optimal arms within the given intervals, i.e., we obtain PAC (probably approximately correct) guarantees. We also provide an algorithm for a generalization wherein the weight of each point is a multi-dimensional vector. The sample complexities of our algorithms depend, in particular, on the size of the optimal hitting set of the given intervals. Finally, we establish lower bounds proving that the obtained sample complexities are essentially tight. Our results highlight the significance of geometric constructs -- specifically, hitting sets -- in our MAB setting.