Abstract:The potential of artificial intelligence (AI)-based large language models (LLMs) holds considerable promise in revolutionizing education, research, and practice. However, distinguishing between human-written and AI-generated text has become a significant task. This paper presents a comparative study, introducing a novel dataset of human-written and LLM-generated texts in different genres: essays, stories, poetry, and Python code. We employ several machine learning models to classify the texts. Results demonstrate the efficacy of these models in discerning between human and AI-generated text, despite the dataset's limited sample size. However, the task becomes more challenging when classifying GPT-generated text, particularly in story writing. The results indicate that the models exhibit superior performance in binary classification tasks, such as distinguishing human-generated text from a specific LLM, compared to the more complex multiclass tasks that involve discerning among human-generated and multiple LLMs. Our findings provide insightful implications for AI text detection while our dataset paves the way for future research in this evolving area.
Abstract:This research paper investigates the effectiveness of simple linear models versus complex machine learning techniques in breast cancer diagnosis, emphasizing the importance of interpretability and computational efficiency in the medical domain. We focus on Logistic Regression (LR), Decision Trees (DT), and Support Vector Machines (SVM) and optimize their performance using the UCI Machine Learning Repository dataset. Our findings demonstrate that the simpler linear model, LR, outperforms the more complex DT and SVM techniques, with a test score mean of 97.28%, a standard deviation of 1.62%, and a computation time of 35.56 ms. In comparison, DT achieved a test score mean of 93.73%, and SVM had a test score mean of 96.44%. The superior performance of LR can be attributed to its simplicity and interpretability, which provide a clear understanding of the relationship between input features and the outcome. This is particularly valuable in the medical domain, where interpretability is crucial for decision-making. Moreover, the computational efficiency of LR offers advantages in terms of scalability and real-world applicability. The results of this study highlight the power of simplicity in the context of breast cancer diagnosis and suggest that simpler linear models like LR can be more effective, interpretable, and computationally efficient than their complex counterparts, making them a more suitable choice for medical applications.
Abstract:The emergence of an AI-powered chatbot that can generate human-like sentences and write coherent essays has caught the world's attention. This paper discusses the historical overview of chatbots and the technology behind Chat Generative Pre-trained Transformer, better known as ChatGPT. Moreover, potential applications of ChatGPT in various domains, including healthcare, education, and research, are highlighted. Despite promising results, there are several privacy and ethical concerns surrounding ChatGPT. In addition, we highlight some of the important limitations of the current version of ChatGPT. We also ask ChatGPT to provide its point of view and present its responses to several questions we attempt to answer.
Abstract:Digital arts have gained an unprecedented level of popularity with the emergence of non-fungible tokens (NFTs). NFTs are cryptographic assets that are stored on blockchain networks and represent a digital certificate of ownership that cannot be forged. NFTs can be incorporated into a smart contract which allows the owner to benefit from a future sale percentage. While digital art producers can benefit immensely with NFTs, their production is time consuming. Therefore, this paper explores the possibility of using generative adversarial networks (GANs) for automatic generation of digital arts. GANs are deep learning architectures that are widely and effectively used for synthesis of audio, images, and video contents. However, their application to NFT arts have been limited. In this paper, a GAN-based architecture is implemented and evaluated for novel NFT-style digital arts generation. Results from the qualitative case study indicate that the generated artworks are comparable to the real samples in terms of being interesting and inspiring and they were judged to be more innovative than real samples.
Abstract:"Art is the lie that enables us to realize the truth." - Pablo Picasso. For centuries, humans have dedicated themselves to producing arts to convey their imagination. The advancement in technology and deep learning in particular, has caught the attention of many researchers trying to investigate whether art generation is possible by computers and algorithms. Using generative adversarial networks (GANs), applications such as synthesizing photorealistic human faces and creating captions automatically from images were realized. This survey takes a comprehensive look at the recent works using GANs for generating visual arts, music, and literary text. A performance comparison and description of the various GAN architecture are also presented. Finally, some of the key challenges in art generation using GANs are highlighted along with recommendations for future work.