Abstract:We present a novel approach for single-image mesh texturing, which employs a diffusion model with judicious conditioning to seamlessly transfer an object's texture from a single RGB image to a given 3D mesh object. We do not assume that the two objects belong to the same category, and even if they do, there can be significant discrepancies in their geometry and part proportions. Our method aims to rectify the discrepancies by conditioning a pre-trained Stable Diffusion generator with edges describing the mesh through ControlNet, and features extracted from the input image using IP-Adapter to generate textures that respect the underlying geometry of the mesh and the input texture without any optimization or training. We also introduce Image Inversion, a novel technique to quickly personalize the diffusion model for a single concept using a single image, for cases where the pre-trained IP-Adapter falls short in capturing all the details from the input image faithfully. Experimental results demonstrate the efficiency and effectiveness of our edge-aware single-image mesh texturing approach, coined EASI-Tex, in preserving the details of the input texture on diverse 3D objects, while respecting their geometry.
Abstract:Activation functions are essential for deep learning methods to learn and perform complex tasks such as image classification. Rectified Linear Unit (ReLU) has been widely used and become the default activation function across the deep learning community since 2012. Although ReLU has been popular, however, the hard zero property of the ReLU has heavily hindered the negative values from propagating through the network. Consequently, the deep neural network has not been benefited from the negative representations. In this work, an activation function called Flatten-T Swish (FTS) that leverage the benefit of the negative values is proposed. To verify its performance, this study evaluates FTS with ReLU and several recent activation functions. Each activation function is trained using MNIST dataset on five different deep fully connected neural networks (DFNNs) with depth vary from five to eight layers. For a fair evaluation, all DFNNs are using the same configuration settings. Based on the experimental results, FTS with a threshold value, T=-0.20 has the best overall performance. As compared with ReLU, FTS (T=-0.20) improves MNIST classification accuracy by 0.13%, 0.70%, 0.67%, 1.07% and 1.15% on wider 5 layers, slimmer 5 layers, 6 layers, 7 layers and 8 layers DFNNs respectively. Apart from this, the study also noticed that FTS converges twice as fast as ReLU. Although there are other existing activation functions are also evaluated, this study elects ReLU as the baseline activation function.