Abstract:This paper studies the geometry of binary hyperdimensional computing (HDC), a computational scheme in which data are encoded using high-dimensional binary vectors. We establish a result about the similarity structure induced by the HDC binding operator and show that the Laplace kernel naturally arises in this setting, motivating our new encoding method Laplace-HDC, which improves upon previous methods. We describe how our results indicate limitations of binary HDC in encoding spatial information from images and discuss potential solutions, including using Haar convolutional features and the definition of a translation-equivariant HDC encoding. Several numerical experiments highlighting the improved accuracy of Laplace-HDC in contrast to alternative methods are presented. We also numerically study other aspects of the proposed framework such as robustness and the underlying translation-equivariant encoding.
Abstract:Supervised learning problems may become ill-posed when there is a lack of information, resulting in unstable and non-unique solutions. However, instead of solely relying on regularization, initializing an informative ill-posed operator is akin to posing better questions to achieve more accurate answers. The Fredholm integral equation of the first kind (FIFK) is a reliable ill-posed operator that can integrate distributions and prior knowledge as input information. By incorporating input distributions and prior knowledge, the FIFK operator can address the limitations of using high-dimensional input distributions by semi-supervised assumptions, leading to more precise approximations of the integral operator. Additionally, the FIFK's incorporation of probabilistic principles can further enhance the accuracy and effectiveness of solutions. In cases of noisy operator equations and limited data, the FIFK's flexibility in defining problems using prior information or cross-validation with various kernel designs is especially advantageous. This capability allows for detailed problem definitions and facilitates achieving high levels of accuracy and stability in solutions. In our study, we examined the FIFK through two different approaches. Firstly, we implemented a semi-supervised assumption by using the same Fredholm operator kernel and data function kernel and incorporating unlabeled information. Secondly, we used the MSDF method, which involves selecting different kernels on both sides of the equation to define when the mapping kernel is different from the data function kernel. To assess the effectiveness of the FIFK and the proposed methods in solving ill-posed problems, we conducted experiments on a real-world dataset. Our goal was to compare the performance of these methods against the widely used least-squares method and other comparable methods.