Abstract:Quantum Generative Modelling (QGM) relies on preparing quantum states and generating samples from these states as hidden - or known - probability distributions. As distributions from some classes of quantum states (circuits) are inherently hard to sample classically, QGM represents an excellent testbed for quantum supremacy experiments. Furthermore, generative tasks are increasingly relevant for industrial machine learning applications, and thus QGM is a strong candidate for demonstrating a practical quantum advantage. However, this requires that quantum circuits are trained to represent industrially relevant distributions, and the corresponding training stage has an extensive training cost for current quantum hardware in practice. In this work, we propose protocols for classical training of QGMs based on circuits of the specific type that admit an efficient gradient computation, while remaining hard to sample. In particular, we consider Instantaneous Quantum Polynomial (IQP) circuits and their extensions. Showing their classical simulability in terms of the time complexity, sparsity and anti-concentration properties, we develop a classically tractable way of simulating their output probability distributions, allowing classical training to a target probability distribution. The corresponding quantum sampling from IQPs can be performed efficiently, unlike when using classical sampling. We numerically demonstrate the end-to-end training of IQP circuits using probability distributions for up to 30 qubits on a regular desktop computer. When applied to industrially relevant distributions this combination of classical training with quantum sampling represents an avenue for reaching advantage in the NISQ era.
Abstract:In todays age of data, discovering relationships between different variables is an interesting and a challenging problem. This problem becomes even more critical with regards to complex dynamical systems like weather forecasting and econometric models, which can show highly non-linear behavior. A method based on mutual information and deep neural networks is proposed as a versatile framework for discovering non-linear relationships ranging from functional dependencies to causality. We demonstrate the application of this method to actual multivariable non-linear dynamical systems. We also show that this method can find relationships even for datasets with small number of datapoints, as is often the case with empirical data.