Abstract:In the absence of labeled target data, unsupervised domain adaptation approaches seek to align the marginal distributions of the source and target domains in order to train a classifier for the target. Unsupervised domain alignment procedures are category-agnostic and end up misaligning the categories. We address this problem by deploying a pretrained network to determine accurate labels for the target domain using a multi-stage pseudo-label refinement procedure. The filters are based on the confidence, distance (conformity), and consistency of the pseudo labels. Our results on multiple datasets demonstrate the effectiveness of our simple procedure in comparison with complex state-of-the-art techniques.
Abstract:Vision transformers require a huge amount of labeled data to outperform convolutional neural networks. However, labeling a huge dataset is a very expensive process. Self-supervised learning techniques alleviate this problem by learning features similar to supervised learning in an unsupervised way. In this paper, we propose a self-supervised technique PatchRot that is crafted for vision transformers. PatchRot rotates images and image patches and trains the network to predict the rotation angles. The network learns to extract both global and local features from an image. Our extensive experiments on different datasets showcase PatchRot training learns rich features which outperform supervised learning and compared baseline.