Abstract:Multidomain sentiment analysis involves estimating the polarity of an unstructured text by exploiting domain specific information. One of the main issues common to the approaches discussed in the literature is their poor applicability to domains that differ from those used to construct opinion models.This paper aims to present a new method for Persian multidomain SA analysis using deep learning approaches. The proposed BERTCapsules approach consists of a combination of BERT and Capsule models. In this approach, BERT was used for Instance representation, and Capsule Structure was used to learn the extracted graphs. Digikala dataset, including ten domains with both positive and negative polarity, was used to evaluate this approach. The evaluation of the BERTCaps model achieved an accuracy of 0.9712 in sentiment classification binary classification and 0.8509 in domain classification .
Abstract:Breast cancer stands as a prevalent cause of fatality among females on a global scale, with prompt detection playing a pivotal role in diminishing mortality rates. The utilization of ultrasound scans in the BUSI dataset for medical imagery pertaining to breast cancer has exhibited commendable segmentation outcomes through the application of UNet and UNet++ networks. Nevertheless, a notable drawback of these models resides in their inattention towards the temporal aspects embedded within the images. This research endeavors to enrich the UNet++ architecture by integrating LSTM layers and self-attention mechanisms to exploit temporal characteristics for segmentation purposes. Furthermore, the incorporation of a Multiscale Feature Extraction Module aims to grasp varied scale features within the UNet++. Through the amalgamation of our proposed methodology with data augmentation on the BUSI with GT dataset, an accuracy rate of 98.88%, specificity of 99.53%, precision of 95.34%, sensitivity of 91.20%, F1-score of 93.74, and Dice coefficient of 92.74% are achieved. These findings demonstrate competitiveness with cutting-edge techniques outlined in existing literature.
Abstract:Accurate classification of objects in 3D point clouds is a significant problem in several applications, such as autonomous navigation and augmented/virtual reality scenarios, which has become a research hot spot. In this paper, we presented a deep learning strategy for 3D object classification in augmented reality. The proposed approach is a combination of the GRU and LSTM. LSTM networks learn longer dependencies well, but due to the number of gates, it takes longer to train; on the other hand, GRU networks have a weaker performance than LSTM, but their training speed is much higher than GRU, which is The speed is due to its fewer gates. The proposed approach used the combination of speed and accuracy of these two networks. The proposed approach achieved an accuracy of 0.99 in the 4,499,0641 points dataset, which includes eight classes (unlabeled, man-made terrain, natural terrain, high vegetation, low vegetation, buildings, hardscape, scanning artifacts, cars). Meanwhile, the traditional machine learning approaches could achieve a maximum accuracy of 0.9489 in the best case. Keywords: Point Cloud Classification, Virtual Reality, Hybrid Model, GRULSTM, GRU, LSTM