Abstract:Accurate classification of objects in 3D point clouds is a significant problem in several applications, such as autonomous navigation and augmented/virtual reality scenarios, which has become a research hot spot. In this paper, we presented a deep learning strategy for 3D object classification in augmented reality. The proposed approach is a combination of the GRU and LSTM. LSTM networks learn longer dependencies well, but due to the number of gates, it takes longer to train; on the other hand, GRU networks have a weaker performance than LSTM, but their training speed is much higher than GRU, which is The speed is due to its fewer gates. The proposed approach used the combination of speed and accuracy of these two networks. The proposed approach achieved an accuracy of 0.99 in the 4,499,0641 points dataset, which includes eight classes (unlabeled, man-made terrain, natural terrain, high vegetation, low vegetation, buildings, hardscape, scanning artifacts, cars). Meanwhile, the traditional machine learning approaches could achieve a maximum accuracy of 0.9489 in the best case. Keywords: Point Cloud Classification, Virtual Reality, Hybrid Model, GRULSTM, GRU, LSTM
Abstract:Sentiment classification is a fundamental task in natural language processing, assigning one of the three classes, positive, negative, or neutral, to free texts. However, sentiment classification models are highly domain dependent; the classifier may perform classification with reasonable accuracy in one domain but not in another due to the Semantic multiplicity of words getting poor accuracy. This article presents a new Persian/Arabic multi-domain sentiment analysis method using the cumulative weighted capsule networks approach. Weighted capsule ensemble consists of training separate capsule networks for each domain and a weighting measure called domain belonging degree (DBD). This criterion consists of TF and IDF, which calculates the dependency of each document for each domain separately; this value is multiplied by the possible output that each capsule creates. In the end, the sum of these multiplications is the title of the final output, and is used to determine the polarity. And the most dependent domain is considered the final output for each domain. The proposed method was evaluated using the Digikala dataset and obtained acceptable accuracy compared to the existing approaches. It achieved an accuracy of 0.89 on detecting the domain of belonging and 0.99 on detecting the polarity. Also, for the problem of dealing with unbalanced classes, a cost-sensitive function was used. This function was able to achieve 0.0162 improvements in accuracy for sentiment classification. This approach on Amazon Arabic data can achieve 0.9695 accuracies in domain classification.
Abstract:Text classification is a fundamental task in natural language processing (NLP). Several recent studies show the success of deep learning on text processing. Convolutional neural network (CNN), as a popular deep learning model, has shown remarkable success in the task of text classification. In this paper, new baseline models have been studied for text classification using CNN. In these models, documents are fed to the network as a three-dimensional tensor representation to provide sentence-level analysis. Applying such a method enables the models to take advantage of the positional information of the sentences in the text. Besides, analysing adjacent sentences allows extracting additional features. The proposed models have been compared with the state-of-the-art models using several datasets. The results have shown that the proposed models have better performance, particularly in the longer documents.
Abstract:Today, the use of social networking data has attracted a lot of academic and commercial attention in predicting the stock market. In most studies in this area, the sentiment analysis of the content of user posts on social networks is used to predict market fluctuations. Predicting stock marketing is challenging because of the variables involved. In the short run, the market behaves like a voting machine, but in the long run, it acts like a weighing machine. The purpose of this study is to predict EUR/USD stock behavior using Capsule Network on finance texts and Candlestick images. One of the most important features of Capsule Network is the maintenance of features in a vector, which also takes into account the space between features. The proposed model, TI-Capsule (Text and Image information based Capsule Neural Network), is trained with both the text and image information simultaneously. Extensive experiments carried on the collected dataset have demonstrated the effectiveness of TI-Capsule in solving the stock exchange prediction problem with 91% accuracy.