Abstract:Point cloud segmentation and classification are some of the primary tasks in 3D computer vision with applications ranging from augmented reality to robotics. However, processing point clouds using deep learning-based algorithms is quite challenging due to the irregular point formats. Voxelization or 3D grid-based representation are different ways of applying deep neural networks to this problem. In this paper, we propose PointResNet, a residual block-based approach. Our model directly processes the 3D points, using a deep neural network for the segmentation and classification tasks. The main components of the architecture are: 1) residual blocks and 2) multi-layered perceptron (MLP). We show that it preserves profound features and structural information, which are useful for segmentation and classification tasks. The experimental evaluations demonstrate that the proposed model produces the best results for segmentation and comparable results for classification in comparison to the conventional baselines.
Abstract:Air pollution kills around 7 million people annually, and approximately 2.4 billion people are exposed to hazardous air pollution. Accurate, fine-grained air quality (AQ) monitoring is essential to control and reduce pollution. However, AQ station deployment is sparse, and thus air quality inference for unmonitored locations is crucial. Conventional interpolation methods fail to learn the complex AQ phenomena. This work demonstrates that Deep Gaussian Process models (DGPs) are a promising model for the task of AQ inference. We implement Doubly Stochastic Variational Inference, a DGP algorithm, and show that it performs comparably to the state-of-the-art models.