Abstract:This paper presents an innovative approach to recognizing personality traits using deep learning (DL) methods applied to electrocardiogram (ECG) signals. Within the framework of detecting the big five personality traits model encompassing extra-version, neuroticism, agreeableness, conscientiousness, and openness, the research explores the potential of ECG-derived spectrograms as informative features. Optimal window sizes for spectrogram generation are determined, and a convolutional neural network (CNN), specifically Resnet-18, and visual transformer (ViT) are employed for feature extraction and personality trait classification. The study utilizes the publicly available ASCERTAIN dataset, which comprises various physiological signals, including ECG recordings, collected from 58 participants during the presentation of video stimuli categorized by valence and arousal levels. The outcomes of this study demonstrate noteworthy performance in personality trait classification, consistently achieving F1-scores exceeding 0.9 across different window sizes and personality traits. These results emphasize the viability of ECG signal spectrograms as a valuable modality for personality trait recognition, with Resnet-18 exhibiting effectiveness in discerning distinct personality traits.
Abstract:An accurate classification of upper limb movements using electroencephalography (EEG) signals is gaining significant importance in recent years due to the prevalence of brain-computer interfaces. The upper limbs in the human body are crucial since different skeletal segments combine to make a range of motion that helps us in our trivial daily tasks. Decoding EEG-based upper limb movements can be of great help to people with spinal cord injury (SCI) or other neuro-muscular diseases such as amyotrophic lateral sclerosis (ALS), primary lateral sclerosis, and periodic paralysis. This can manifest in a loss of sensory and motor function, which could make a person reliant on others to provide care in day-to-day activities. We can detect and classify upper limb movement activities, whether they be executed or imagined using an EEG-based brain-computer interface (BCI). Toward this goal, we focus our attention on decoding movement execution (ME) of the upper limb in this study. For this purpose, we utilize a publicly available EEG dataset that contains EEG signal recordings from fifteen subjects acquired using a 61-channel EEG device. We propose a method to classify four ME classes for different subjects using spectrograms of the EEG data through pre-trained deep learning (DL) models. Our proposed method of using EEG spectrograms for the classification of ME has shown significant results, where the highest average classification accuracy (for four ME classes) obtained is 87.36%, with one subject achieving the best classification accuracy of 97.03%.
Abstract:The loss of limb motion arising from damage to the spinal cord is a disability that could effect people while performing their day-to-day activities. The restoration of limb movement would enable people with spinal cord injury to interact with their environment more naturally and this is where a brain-computer interface (BCI) system could be beneficial. The detection of limb movement imagination (MI) could be significant for such a BCI, where the detected MI can guide the computer system. Using MI detection through electroencephalography (EEG), we can recognize the imagination of movement in a user and translate this into a physical movement. In this paper, we utilize pre-trained deep learning (DL) algorithms for the classification of imagined upper limb movements. We use a publicly available EEG dataset with data representing seven classes of limb movements. We compute the spectrograms of the time series EEG signal and use them as an input to the DL model for MI classification. Our novel approach for the classification of upper limb movements using pre-trained DL algorithms and spectrograms has achieved significantly improved results for seven movement classes. When compared with the recently proposed state-of-the-art methods, our algorithm achieved a significant average accuracy of 84.9% for classifying seven movements.