Abstract:In the domain of semantic parsing, significant progress has been achieved in Text-to-SQL and question-answering tasks, both of which focus on extracting information from data sources in their native formats. However, the inherent constraints of their formal meaning representations, such as SQL programming language or basic logical forms, hinder their ability to analyze data from various perspectives, such as conducting statistical analyses. To address this limitation and inspire research in this field, we design SIGMA, a new dataset for Text-to-Code semantic parsing with statistical analysis. SIGMA comprises 6000 questions with corresponding Python code labels, spanning across 160 databases. Half of the questions involve query types, which return information in its original format, while the remaining 50% are statistical analysis questions, which perform statistical operations on the data. The Python code labels in our dataset cover 4 types of query types and 40 types of statistical analysis patterns. We evaluated the SIGMA dataset using three different baseline models: LGESQL, SmBoP, and SLSQL. The experimental results show that the LGESQL model with ELECTRA outperforms all other models, achieving 83.37% structure accuracy. In terms of execution accuracy, the SmBoP model, when combined with GraPPa and T5, reaches 76.38%.
Abstract:In Natural Language Processing (NLP), one of the most important tasks is text-to-SQL semantic parsing, which focuses on enabling users to interact with the database in a more natural manner. In recent years, text-to-SQL has made significant progress, but most were English-centric. In this paper, we introduce Ar-Spider 1, the first Arabic cross-domain text-to-SQL dataset. Due to the unique nature of the language, two major challenges have been encountered, namely schema linguistic and SQL structural challenges. In order to handle these issues and conduct the experiments, we adopt two baseline models LGESQL [4] and S2SQL [12], both of which are tested with two cross-lingual models to alleviate the effects of schema linguistic and SQL structure linking challenges. The baselines demonstrate decent single-language performance on our Arabic text-to-SQL dataset, Ar-Spider, achieving 62.48% for S2SQL and 65.57% for LGESQL, only 8.79% below the highest results achieved by the baselines when trained in English dataset. To achieve better performance on Arabic text-to-SQL, we propose the context similarity relationship (CSR) approach, which results in a significant increase in the overall performance of about 1.52% for S2SQL and 1.06% for LGESQL and closes the gap between Arabic and English languages to 7.73%.
Abstract:Detecting harmful content on social media, such as Twitter, is made difficult by the fact that the seemingly simple yes/no classification conceals a significant amount of complexity. Unfortunately, while several datasets have been collected for training classifiers in hate and offensive speech, there is a scarcity of datasets labeled with a finer granularity of target classes and specific targets. In this paper, we introduce THOS, a dataset of 8.3k tweets manually labeled with fine-grained annotations about the target of the message. We demonstrate that this dataset makes it feasible to train classifiers, based on Large Language Models, to perform classification at this level of granularity.