Abstract:We propose a scheme leveraging reinforcement learning to engineer control fields for generating non-classical states. It is exemplified by the application to prepare spin squeezed state for an open collective spin model where a linear control term is designed to govern the dynamics. The reinforcement learning agent determines the temporal sequence of control pulses, commencing from coherent spin state in an environment characterized by dissipation and dephasing. When compared to constant control scenarios, this approach provides various control sequences maintaining collective spin squeezing and entanglement. It is observed that denser application of the control pulses enhances the performance of the outcomes. Furthermore, there is a minor enhancement in the performance by adding control actions. The proposed strategy demonstrates increased effectiveness for larger systems. And thermal excitations of the reservoir are detrimental to the control outcomes. It should be confirmed that this is an open-loop strategy by closed-loop simulation, circumventing collapse of quantum state induced by measurements. Thanks to the flexible replaceability of the optimization modules and the controlled system, this research paves the way for its application in manipulating other quantum systems.
Abstract:In-camera event denoising reduces the data rate of event cameras by filtering out noise at the source. A lightweight multilayer perceptron denoising filter (MLPF) provides state-of-the-art low-cost denoising accuracy. It processes a small neighborhood of pixels from the timestamp image around each event to discriminate signal and noise events. This paper proposes two digital logic implementations of the MLPF denoiser and quantifies their resource cost, power, and latency. The hardware MLPF quantizes the weights and hidden unit activations to 4 bits and has about 1k weights with about 40% sparsity. The Area-Under-Curve Receiver Operating Characteristic accuracy is nearly indistinguishable from that of the floating point network. The FPGA MLPF processes each event in 10 clock cycles. In FPGA, it uses 3.5k flip flops and 11.5k LUTs. Our ASIC implementation in 65nm digital technology for a 346x260 pixel camera occupies an area of 4.3mm^2 and consumes 4nJ of energy per event at event rates up to 25MHz. The MLPF can be easily integrated into an event camera using an FPGA or as an ASIC directly on the camera chip or in the same package. This denoising could dramatically reduce the energy consumed by the communication and host processor and open new areas of always-on event camera application under scavenged and battery power. Code: https://github.com/SensorsINI/dnd_hls