Abstract:Automatic rapport estimation in social interactions is a central component of affective computing. Recent reports have shown that the estimation performance of rapport in initial interactions can be improved by using the participant's personality traits as the model's input. In this study, we investigate whether this findings applies to interactions between friends by developing rapport estimation models that utilize nonverbal cues (audio and facial expressions) as inputs. Our experimental results show that adding Big Five features (BFFs) to nonverbal features can improve the estimation performance of self-reported rapport in dyadic interactions between friends. Next, we demystify how BFFs improve the estimation performance of rapport through a comparative analysis between models with and without BFFs. We decompose rapport ratings into perceiver effects (people's tendency to rate other people), target effects (people's tendency to be rated by other people), and relationship effects (people's unique ratings for a specific person) using the social relations model. We then analyze the extent to which BFFs contribute to capturing each effect. Our analysis demonstrates that the perceiver's and the target's BFFs lead estimation models to capture the perceiver and the target effects, respectively. Furthermore, our experimental results indicate that the combinations of facial expression features and BFFs achieve best estimation performances not only in estimating rapport ratings, but also in estimating three effects. Our study is the first step toward understanding why personality-aware estimation models of interpersonal perception accomplish high estimation performance.
Abstract:Driving assistance systems that support drivers by adapting individual psychological characteristics can provide appropriate feedback and prevent traffic accidents. As a first step toward implementing such adaptive assistance systems, this research aims to develop a model to estimate drivers' psychological characteristics, such as cognitive function, psychological driving style, and workload sensitivity, from on-road driving behavioral data using machine learning and deep learning techniques. We also investigated the relationship between driving behavior and various cognitive functions including the Trail Making test and Useful Field of View test through regression modeling. The proposed method focuses on road type information and captures various durations of time-series data observed from driving behaviors. First, we segment the driving time-series data into two road types, namely, arterial roads and intersections, to consider driving situations. Second, we further segment data into many sequences of various durations. Third, statistics are calculated from each sequence. Finally, these statistics are used as input features of machine learning models to predict psychological characteristics. The experimental results show that our model can predict a driver's cognitive function, namely, the Trail Making Test version B and Useful Field of View test scores, with Pearson correlation coefficients $r$ of 0.579 and 0.557, respectively. Some characteristics, such as psychological driving style and workload sensitivity, are predicted with high accuracy, but whether various duration segmentation improves accuracy depends on the characteristics, and it is not effective for all characteristics. Additionally, we reveal important sensor and road types for the estimation of cognitive function.