Abstract:The cross-learning contextual bandit problem with graphical feedback has recently attracted significant attention. In this setting, there is a contextual bandit with a feedback graph over the arms, and pulling an arm reveals the loss for all neighboring arms in the feedback graph across all contexts. Initially proposed by Han et al. (2024), this problem has broad applications in areas such as bidding in first price auctions, and explores a novel frontier in the feedback structure of bandit problems. A key theoretical question is whether an algorithm with $\widetilde{O}(\sqrt{\alpha T})$ regret exists, where $\alpha$ represents the independence number of the feedback graph. This question is particularly interesting because it concerns whether an algorithm can achieve a regret bound entirely independent of the number of contexts and matching the minimax regret of vanilla graphical bandits. Previous work has demonstrated that such an algorithm is impossible for adversarial contexts, but the question remains open for stochastic contexts. In this work, we affirmatively answer this open question by presenting an algorithm that achieves the minimax $\widetilde{O}(\sqrt{\alpha T})$ regret for cross-learning contextual bandits with graphical feedback and stochastic contexts. Notably, although that question is open even for stochastic bandits, we directly solve the strictly stronger adversarial bandit version of the problem.
Abstract:Motivated by applications in online bidding and sleeping bandits, we examine the problem of contextual bandits with cross learning, where the learner observes the loss associated with the action across all possible contexts, not just the current round's context. Our focus is on a setting where losses are chosen adversarially, and contexts are sampled i.i.d. from a specific distribution. This problem was first studied by Balseiro et al. (2019), who proposed an algorithm that achieves near-optimal regret under the assumption that the context distribution is known in advance. However, this assumption is often unrealistic. To address this issue, Schneider and Zimmert (2023) recently proposed a new algorithm that achieves nearly optimal expected regret. It is well-known that expected regret can be significantly weaker than high-probability bounds. In this paper, we present a novel, in-depth analysis of their algorithm and demonstrate that it actually achieves near-optimal regret with high probability. There are steps in the original analysis by Schneider and Zimmert (2023) that lead only to an expected bound by nature. In our analysis, we introduce several new insights. Specifically, we make extensive use of the weak dependency structure between different epochs, which was overlooked in previous analyses. Additionally, standard martingale inequalities are not directly applicable, so we refine martingale inequalities to complete our analysis.