Abstract:Accurate Travel Time Estimation (TTE) is critical for ride-hailing platforms, where errors directly impact user experience and operational efficiency. While existing production systems excel at holistic route-level dependency modeling, they struggle to capture city-scale traffic dynamics and long-tail scenarios, leading to unreliable predictions in large urban networks. In this paper, we propose \model, a scalable and adaptive framework that synergistically integrates link-level modeling with industrial route-level TTE systems. Specifically, we propose a spatio-temporal external attention module to capture global traffic dynamic dependencies across million-scale road networks efficiently. Moreover, we construct a stabilized graph mixture-of-experts network to handle heterogeneous traffic patterns while maintaining inference efficiency. Furthermore, an asynchronous incremental learning strategy is tailored to enable real-time and stable adaptation to dynamic traffic distribution shifts. Experiments on real-world datasets validate MixTTE significantly reduces prediction errors compared to seven baselines. MixTTE has been deployed in DiDi, substantially improving the accuracy and stability of the TTE service.
Abstract:Federated Graph Learning (FGL) aims to collaboratively and privately optimize graph models on divergent data for different tasks. A critical challenge in FGL is to enable effective yet efficient federated optimization against multifaceted graph heterogeneity to enhance mutual performance. However, existing FGL works primarily address graph data heterogeneity and perform incapable of graph task heterogeneity. To address the challenge, we propose a Federated Graph Prompt Learning (FedGPL) framework to efficiently enable prompt-based asymmetric graph knowledge transfer between multifaceted heterogeneous federated participants. Generally, we establish a split federated framework to preserve universal and domain-specific graph knowledge, respectively. Moreover, we develop two algorithms to eliminate task and data heterogeneity for advanced federated knowledge preservation. First, a Hierarchical Directed Transfer Aggregator (HiDTA) delivers cross-task beneficial knowledge that is hierarchically distilled according to the directional transferability. Second, a Virtual Prompt Graph (VPG) adaptively generates graph structures to enhance data utility by distinguishing dominant subgraphs and neutralizing redundant ones. We conduct theoretical analyses and extensive experiments to demonstrate the significant accuracy and efficiency effectiveness of FedGPL against multifaceted graph heterogeneity compared to state-of-the-art baselines on large-scale federated graph datasets.