Abstract:A multiple-input multiple-output wireless communication system is analytically studied, which operates with the aid of a large-scale reconfigurable intelligent surface (LRIS). LRIS is equipped with multiple passive elements with discrete phase adjustment capabilities, and independent Rician fading conditions are assumed for both the transmitter-to-LRIS and LRIS-to-receiver links. A direct transceiver link is also considered which is modeled by Rayleigh fading distribution. The system performance is analytically studied when the linear yet efficient zero-forcing detection is implemented at the receiver. In particular, the outage performance is derived in closed-form expression for different system configuration setups with regards to the available channel state information (CSI) at the receiver. In fact, the case of both perfect and imperfect CSI is analyzed. Also, an efficient phase shift design approach at LRIS is introduced, which is linear on the number of passive elements and receive antennas. The proposed phase shift design can be applied on two different modes of operation; namely, when the system strives to adapt either on the instantaneous or statistical CSI. Finally, some impactful engineering insights are provided, such as how the channel fading conditions, CSI, discrete phase shift resolution, and volume of antenna/LRIS element arrays impact on the overall system performance.
Abstract:Driven by B5G and 6G technologies, multi-network fusion is an indispensable tendency for future communications. In this paper, we focus on and analyze the \emph{security performance} (SP) of the \emph{satellite-terrestrial downlink transmission} (STDT). Here, the STDT is composed of a satellite network and a vehicular network with a legitimate mobile receiver and an mobile eavesdropper distributing. To theoretically analyze the SP of this system from the perspective of mobile terminals better, the random geometry theory is adopted, which assumes that both terrestrial vehicles are distributed stochastically in one beam of the satellite. Furthermore, based on this theory, the closed-form analytical expressions for two crucial and specific indicators in the STDT are derived, respectively, the secrecy outage probability and the ergodic secrecy capacity. Additionally, several related variables restricting the SP of the STDT are discussed, and specific schemes are presented to enhance the SP. Then, the asymptotic property is investigated in the high signal-to-noise ratio scenario, and accurate and asymptotic closed-form expressions are given. Finally, simulation results show that, under the precondition of guaranteeing the reliability of the STDT, the asymptotic solutions outperform the corresponding accurate results significantly in the effectiveness.