Abstract:Neural networks, such as image classifiers, are frequently trained on proprietary and confidential datasets. It is generally assumed that once deployed, the training data remains secure, as adversaries are limited to query response interactions with the model, where at best, fragments of arbitrary data can be inferred without any guarantees on their authenticity. In this paper, we propose the memory backdoor attack, where a model is covertly trained to memorize specific training samples and later selectively output them when triggered with an index pattern. What makes this attack unique is that it (1) works even when the tasks conflict (making a classifier output images), (2) enables the systematic extraction of training samples from deployed models and (3) offers guarantees on the extracted authenticity of the data. We demonstrate the attack on image classifiers, segmentation models, and a large language model (LLM). We demonstrate the attack on image classifiers, segmentation models, and a large language model (LLM). With this attack, it is possible to hide thousands of images and texts in modern vision architectures and LLMs respectively, all while maintaining model performance. The memory back door attack poses a significant threat not only to conventional model deployments but also to federated learning paradigms and other modern frameworks. Therefore, we suggest an efficient and effective countermeasure that can be immediately applied and advocate for further work on the topic.
Abstract:AI assistants are becoming an integral part of society, used for asking advice or help in personal and confidential issues. In this paper, we unveil a novel side-channel that can be used to read encrypted responses from AI Assistants over the web: the token-length side-channel. We found that many vendors, including OpenAI and Microsoft, have this side-channel. However, inferring the content of a response from a token-length sequence alone proves challenging. This is because tokens are akin to words, and responses can be several sentences long leading to millions of grammatically correct sentences. In this paper, we show how this can be overcome by (1) utilizing the power of a large language model (LLM) to translate these sequences, (2) providing the LLM with inter-sentence context to narrow the search space and (3) performing a known-plaintext attack by fine-tuning the model on the target model's writing style. Using these methods, we were able to accurately reconstruct 29\% of an AI assistant's responses and successfully infer the topic from 55\% of them. To demonstrate the threat, we performed the attack on OpenAI's ChatGPT-4 and Microsoft's Copilot on both browser and API traffic.