Abstract:In this study, we present a method for predicting the representativity of the phase fraction observed in a single image (2D or 3D) of a material. Traditional approaches often require large datasets and extensive statistical analysis to estimate the Integral Range, a key factor in determining the variance of microstructural properties. Our method leverages the Two-Point Correlation function to directly estimate the variance from a single image (2D or 3D), thereby enabling phase fraction prediction with associated confidence levels. We validate our approach using open-source datasets, demonstrating its efficacy across diverse microstructures. This technique significantly reduces the data requirements for representativity analysis, providing a practical tool for material scientists and engineers working with limited microstructural data. To make the method easily accessible, we have created a web-application, \url{www.imagerep.io}, for quick, simple and informative use of the method.
Abstract:Large Language Models (LLMs) have garnered considerable interest due to their impressive natural language capabilities, which in conjunction with various emergent properties make them versatile tools in workflows ranging from complex code generation to heuristic finding for combinatorial problems. In this paper we offer a perspective on their applicability to materials science research, arguing their ability to handle ambiguous requirements across a range of tasks and disciplines mean they could be a powerful tool to aid researchers. We qualitatively examine basic LLM theory, connecting it to relevant properties and techniques in the literature before providing two case studies that demonstrate their use in task automation and knowledge extraction at-scale. At their current stage of development, we argue LLMs should be viewed less as oracles of novel insight, and more as tireless workers that can accelerate and unify exploration across domains. It is our hope that this paper can familiarise material science researchers with the concepts needed to leverage these tools in their own research.
Abstract:Segmentation is the assigning of a semantic class to every pixel in an image and is a prerequisite for various statistical analysis tasks in materials science, like phase quantification, physics simulations or morphological characterization. The wide range of length scales, imaging techniques and materials studied in materials science means any segmentation algorithm must generalise to unseen data and support abstract, user-defined semantic classes. Trainable segmentation is a popular interactive segmentation paradigm where a classifier is trained to map from image features to user drawn labels. SAMBA is a trainable segmentation tool that uses Meta's Segment Anything Model (SAM) for fast, high-quality label suggestions and a random forest classifier for robust, generalizable segmentations. It is accessible in the browser (https://www.sambasegment.com/) without the need to download any external dependencies. The segmentation backend is run in the cloud, so does not require the user to have powerful hardware.