Wageningen University and Research, the Netherlands
Abstract:Crop yield prediction typically involves the utilization of either theory-driven process-based crop growth models, which have proven to be difficult to calibrate for local conditions, or data-driven machine learning methods, which are known to require large datasets. In this work we investigate potato yield prediction using a hybrid meta-modeling approach. A crop growth model is employed to generate synthetic data for (pre)training a convolutional neural net, which is then fine-tuned with observational data. When applied in silico, our meta-modeling approach yields better predictions than a baseline comprising a purely data-driven approach. When tested on real-world data from field trials (n=303) and commercial fields (n=77), the meta-modeling approach yields competitive results with respect to the crop growth model. In the latter set, however, both models perform worse than a simple linear regression with a hand-picked feature set and dedicated preprocessing designed by domain experts. Our findings indicate the potential of meta-modeling for accurate crop yield prediction; however, further advancements and validation using extensive real-world datasets is recommended to solidify its practical effectiveness.
Abstract:Interpretable machine learning addresses the black-box nature of deep neural networks. Visual prototypes have been suggested for intrinsically interpretable image recognition, instead of generating post-hoc explanations that approximate a trained model. However, a large number of prototypes can be overwhelming. To reduce explanation size and improve interpretability, we propose the Neural Prototype Tree (ProtoTree), a deep learning method that includes prototypes in an interpretable decision tree to faithfully visualize the entire model. In addition to global interpretability, a path in the tree explains a single prediction. Each node in our binary tree contains a trainable prototypical part. The presence or absence of this prototype in an image determines the routing through a node. Decision making is therefore similar to human reasoning: Does the bird have a red throat? And an elongated beak? Then it's a hummingbird! We tune the accuracy-interpretability trade-off using ensembling and pruning. We apply pruning without sacrificing accuracy, resulting in a small tree with only 8 prototypes along a path to classify a bird from 200 species. An ensemble of 5 ProtoTrees achieves competitive accuracy on the CUB-200-2011 and Stanford Cars data sets. Code is available at https://github.com/M-Nauta/ProtoTree