Abstract:Agentic AI systems built on large language models (LLMs) offer significant potential for automating complex workflows, from software development to customer support. However, LLM agents often underperform due to suboptimal configurations; poorly tuned prompts, tool descriptions, and parameters that typically require weeks of manual refinement. Existing optimization methods either are too complex for general use or treat components in isolation, missing critical interdependencies. We present ARTEMIS, a no-code evolutionary optimization platform that jointly optimizes agent configurations through semantically-aware genetic operators. Given only a benchmark script and natural language goals, ARTEMIS automatically discovers configurable components, extracts performance signals from execution logs, and evolves configurations without requiring architectural modifications. We evaluate ARTEMIS on four representative agent systems: the \emph{ALE Agent} for competitive programming on AtCoder Heuristic Contest, achieving a \textbf{$13.6\%$ improvement} in acceptance rate; the \emph{Mini-SWE Agent} for code optimization on SWE-Perf, with a statistically significant \textbf{10.1\% performance gain}; and the \emph{CrewAI Agent} for cost and mathematical reasoning on Math Odyssey, achieving a statistically significant \textbf{$36.9\%$ reduction} in the number of tokens required for evaluation. We also evaluate the \emph{MathTales-Teacher Agent} powered by a smaller open-source model (Qwen2.5-7B) on GSM8K primary-level mathematics problems, achieving a \textbf{22\% accuracy improvement} and demonstrating that ARTEMIS can optimize agents based on both commercial and local models.
Abstract:Computer simulations have become a very powerful tool for scientific research. Given the vast complexity that comes with many open scientific questions, a purely analytical or experimental approach is often not viable. For example, biological systems (such as the human brain) comprise an extremely complex organization and heterogeneous interactions across different spatial and temporal scales. In order to facilitate research on such problems, the BioDynaMo project (\url{https://biodynamo.web.cern.ch/}) aims at a general platform for computer simulations for biological research. Since the scientific investigations require extensive computer resources, this platform should be executable on hybrid cloud computing systems, allowing for the efficient use of state-of-the-art computing technology. This paper describes challenges during the early stages of the software development process. In particular, we describe issues regarding the implementation and the highly interdisciplinary as well as international nature of the collaboration. Moreover, we explain the methodologies, the approach, and the lessons learnt by the team during these first stages.