LIIM
Abstract:In dynamic environments where new concepts continuously emerge, Deep Neural Networks (DNNs) must adapt by learning new classes while retaining previously acquired ones. This challenge is addressed by Class-Incremental Learning (CIL). This paper introduces Generative Binary Memory (GBM), a novel CIL pseudo-replay approach which generates synthetic binary pseudo-exemplars. Relying on Bernoulli Mixture Models (BMMs), GBM effectively models the multi-modal characteristics of class distributions, in a latent, binary space. With a specifically-designed feature binarizer, our approach applies to any conventional DNN. GBM also natively supports Binary Neural Networks (BNNs) for highly-constrained model sizes in embedded systems. The experimental results demonstrate that GBM achieves higher than state-of-the-art average accuracy on CIFAR100 (+2.9%) and TinyImageNet (+1.5%) for a ResNet-18 equipped with our binarizer. GBM also outperforms emerging CIL methods for BNNs, with +3.1% in final accuracy and x4.7 memory reduction, on CORE50.
Abstract:Binary Neural Networks (BNNs) are a promising approach to enable Artificial Neural Network (ANN) implementation on ultra-low power edge devices. Such devices may compute data in highly dynamic environments, in which the classes targeted for inference can evolve or even novel classes may arise, requiring continual learning. Class Incremental Learning (CIL) is a common type of continual learning for classification problems, that has been scarcely addressed in the context of BNNs. Furthermore, most of existing BNNs models are not fully binary, as they require several real-valued network layers, at the input, the output, and for batch normalization. This paper goes a step further, enabling class incremental learning in Fully-Binarized NNs (FBNNs) through four main contributions. We firstly revisit the FBNN design and its training procedure that is suitable to CIL. Secondly, we explore loss balancing, a method to trade-off the performance of past and current classes. Thirdly, we propose a semi-supervised method to pre-train the feature extractor of the FBNN for transferable representations. Fourthly, two conventional CIL methods, \ie, Latent and Native replay, are thoroughly compared. These contributions are exemplified first on the CIFAR100 dataset, before being scaled up to address the CORE50 continual learning benchmark. The final results based on our 3Mb FBNN on CORE50 exhibit at par and better performance than conventional real-valued larger NN models.
Abstract:Increased capabilities such as recognition and self-adaptability are now required from IoT applications. While IoT node power consumption is a major concern for these applications, cloud-based processing is becoming unsustainable due to continuous sensor or image data transmission over the wireless network. Thus optimized ML capabilities and data transfers should be integrated in the IoT node. Moreover, IoT applications are torn between sporadic data-logging and energy-hungry data processing (e.g. image classification). Thus, the versatility of the node is key in addressing this wide diversity of energy and processing needs. This paper presents SamurAI, a versatile IoT node bridging this gap in processing and in energy by leveraging two on-chip sub-systems: a low power, clock-less, event-driven Always-Responsive (AR) part and an energy-efficient On-Demand (OD) part. AR contains a 1.7MOPS event-driven, asynchronous Wake-up Controller (WuC) with a 207ns wake-up time optimized for sporadic computing, while OD combines a deep-sleep RISC-V CPU and 1.3TOPS/W Machine Learning (ML) for more complex tasks up to 36GOPS. This architecture partitioning achieves best in class versatility metrics such as peak performance to idle power ratio. On an applicative classification scenario, it demonstrates system power gains, up to 3.5x compared to cloud-based processing, and thus extended battery lifetime.