Abstract:Probabilistic Quantum Memory (PQM) is a data structure that computes the distance from a binary input to all binary patterns stored in superposition on the memory. This data structure allows the development of heuristics to speed up artificial neural networks architecture selection. In this work, we propose an improved parametric version of the PQM to perform pattern classification, and we also present a PQM quantum circuit suitable for Noisy Intermediate Scale Quantum (NISQ) computers. We present a classical evaluation of a parametric PQM network classifier on public benchmark datasets. We also perform experiments to verify the viability of PQM on a 5-qubit quantum computer.
Abstract:This paper proposes a quantum-classical algorithm to evaluate and select classical artificial neural networks architectures. The proposed algorithm is based on a probabilistic quantum memory and the possibility to train artificial neural networks in superposition. We obtain an exponential quantum speedup in the evaluation of neural networks. We also verify experimentally through a reduced experimental analysis that the proposed algorithm can be used to select near-optimal neural networks.