Abstract:In domestic environments, robots require a comprehensive understanding of their surroundings to interact effectively and intuitively with untrained humans. In this paper, we propose DVEFormer - an efficient RGB-D Transformer-based approach that predicts dense text-aligned visual embeddings (DVE) via knowledge distillation. Instead of directly performing classical semantic segmentation with fixed predefined classes, our method uses teacher embeddings from Alpha-CLIP to guide our efficient student model DVEFormer in learning fine-grained pixel-wise embeddings. While this approach still enables classical semantic segmentation, e.g., via linear probing, it further enables flexible text-based querying and other applications, such as creating comprehensive 3D maps. Evaluations on common indoor datasets demonstrate that our approach achieves competitive performance while meeting real-time requirements, operating at 26.3 FPS for the full model and 77.0 FPS for a smaller variant on an NVIDIA Jetson AGX Orin. Additionally, we show qualitative results that highlight the effectiveness and possible use cases in real-world applications. Overall, our method serves as a drop-in replacement for traditional segmentation approaches while enabling flexible natural-language querying and seamless integration into 3D mapping pipelines for mobile robotics.
Abstract:Scene analysis is essential for enabling autonomous systems, such as mobile robots, to operate in real-world environments. However, obtaining a comprehensive understanding of the scene requires solving multiple tasks, such as panoptic segmentation, instance orientation estimation, and scene classification. Solving these tasks given limited computing and battery capabilities on mobile platforms is challenging. To address this challenge, we introduce an efficient multi-task scene analysis approach, called EMSAFormer, that uses an RGB-D Transformer-based encoder to simultaneously perform the aforementioned tasks. Our approach builds upon the previously published EMSANet. However, we show that the dual CNN-based encoder of EMSANet can be replaced with a single Transformer-based encoder. To achieve this, we investigate how information from both RGB and depth data can be effectively incorporated in a single encoder. To accelerate inference on robotic hardware, we provide a custom NVIDIA TensorRT extension enabling highly optimization for our EMSAFormer approach. Through extensive experiments on the commonly used indoor datasets NYUv2, SUNRGB-D, and ScanNet, we show that our approach achieves state-of-the-art performance while still enabling inference with up to 39.1 FPS on an NVIDIA Jetson AGX Orin 32 GB.