Abstract:This paper presents a novel approach for multimodal data fusion based on the Vector-Quantized Variational Autoencoder (VQVAE) architecture. The proposed method is simple yet effective in achieving excellent reconstruction performance on paired MNIST-SVHN data and WiFi spectrogram data. Additionally, the multimodal VQVAE model is extended to the 5G communication scenario, where an end-to-end Channel State Information (CSI) feedback system is implemented to compress data transmitted between the base-station (eNodeB) and User Equipment (UE), without significant loss of performance. The proposed model learns a discriminative compressed feature space for various types of input data (CSI, spectrograms, natural images, etc), making it a suitable solution for applications with limited computational resources.