Abstract:Today's operations in the spectrum occur across many disparate and unique devices. For example, a military or commercial maritime platform can have dozens of apertures used for various functions. Utilizing software-defined radios and dynamic analog front ends, we propose that future systems involving multiple applications for RF, virtualize operations to gain performance efficiencies. The concept of virtualization of electromagnetic operations (VEMO) is considered a means to enable flexible use of hardware and spectrum resources to achieve diverse mission requirements in military and commercial settings. This will result in more efficient use of resources, including size/weight/power and integration of objectives across systems that employ the electromagnetic spectrum.
Abstract:We investigate the potential of fusing human examiner decisions for the task of digital face manipulation detection. To this end, various decision fusion methods are proposed incorporating the examiners' decision confidence, experience level, and their time to take a decision. Conducted experiments are based on a psychophysical evaluation of digital face image manipulation detection capabilities of humans in which different manipulation techniques were applied, i.e. face morphing, face swapping and retouching. The decisions of 223 participants were fused to simulate crowds of up to seven human examiners. Experimental results reveal that (1) despite the moderate detection performance achieved by single human examiners, a high accuracy can be obtained through decision fusion and (2) a weighted fusion which takes the examiners' decision confidence into account yields the most competitive detection performance.
Abstract:In recent years, increasing deployment of face recognition technology in security-critical settings, such as border control or law enforcement, has led to considerable interest in the vulnerability of face recognition systems to attacks utilising legitimate documents, which are issued on the basis of digitally manipulated face images. As automated manipulation and attack detection remains a challenging task, conventional processes with human inspectors performing identity verification remain indispensable. These circumstances merit a closer investigation of human capabilities in detecting manipulated face images, as previous work in this field is sparse and often concentrated only on specific scenarios and biometric characteristics. This work introduces a web-based, remote visual discrimination experiment on the basis of principles adopted from the field of psychophysics and subsequently discusses interdisciplinary opportunities with the aim of examining human proficiency in detecting different types of digitally manipulated face images, specifically face swapping, morphing, and retouching. In addition to analysing appropriate performance measures, a possible metric of detectability is explored. Experimental data of 306 probands indicate that detection performance is widely distributed across the population and detection of certain types of face image manipulations is much more challenging than others.