Abstract:We develop a two-stage retrieval system that combines multiple complementary retrieval methods with a learned reranker and LLM-based reranking, to address the TREC Tip-of-the-Tongue (ToT) task. In the first stage, we employ hybrid retrieval that merges LLM-based retrieval, sparse (BM25), and dense (BGE-M3) retrieval methods. We also introduce topic-aware multi-index dense retrieval that partitions the Wikipedia corpus into 24 topical domains. In the second stage, we evaluate both a trained LambdaMART reranker and LLM-based reranking. To support model training, we generate 5000 synthetic ToT queries using LLMs. Our best system achieves recall of 0.66 and NDCG@1000 of 0.41 on the test set by combining hybrid retrieval with Gemini-2.5-flash reranking, demonstrating the effectiveness of fusion retrieval.




Abstract:Amyotrophic Lateral Sclerosis (ALS) is characterized as a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options in the realm of medical interventions and therapies. The disease showcases a diverse range of onset patterns and progression trajectories, emphasizing the critical importance of early detection of functional decline to enable tailored care strategies and timely therapeutic interventions. The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app. This data is used to construct various machine learning models specifically designed to forecast the advancement of the ALS Functional Rating Scale-Revised (ALSFRS-R) score, leveraging the dataset provided by the organizers. In our analysis, multiple predictive models were evaluated to determine their efficacy in handling ALS sensor data. The temporal aspect of the sensor data was compressed and amalgamated using statistical methods, thereby augmenting the interpretability and applicability of the gathered information for predictive modeling objectives. The models that demonstrated optimal performance were a naive baseline and ElasticNet regression. The naive model achieved a Mean Absolute Error (MAE) of 0.20 and a Root Mean Square Error (RMSE) of 0.49, slightly outperforming the ElasticNet model, which recorded an MAE of 0.22 and an RMSE of 0.50. Our comparative analysis suggests that while the naive approach yielded marginally better predictive accuracy, the ElasticNet model provides a robust framework for understanding feature contributions.