Abstract:Random forests are a powerful method for non-parametric regression, but are limited in their ability to fit smooth signals, and can show poor predictive performance in the presence of strong, smooth effects. Taking the perspective of random forests as an adaptive kernel method, we pair the forest kernel with a local linear regression adjustment to better capture smoothness. The resulting procedure, local linear forests, enables us to improve on asymptotic rates of convergence for random forests with smooth signals, and provides substantial gains in accuracy on both real and simulated data.