Abstract:We present our experiences using cloud computing to support data-intensive analytics on satellite imagery for commercial applications. Drawing from our background in high-performance computing, we draw parallels between the early days of clustered computing systems and the current state of cloud computing and its potential to disrupt the HPC market. Using our own virtual file system layer on top of cloud remote object storage, we demonstrate aggregate read bandwidth of 230 gigabytes per second using 512 Google Compute Engine (GCE) nodes accessing a USA multi-region standard storage bucket. This figure is comparable to the best HPC storage systems in existence. We also present several of our application results, including the identification of field boundaries in Ukraine, and the generation of a global cloud-free base layer from Landsat imagery.
Abstract:In compressed sensing, we wish to reconstruct a sparse signal $x$ from observed data $y$. In sparse coding, on the other hand, we wish to find a representation of an observed signal $y$ as a sparse linear combination, with coefficients $x$, of elements from an overcomplete dictionary. While many algorithms are competitive at both problems when $x$ is very sparse, it can be challenging to recover $x$ when it is less sparse. We present the Difference Map, which excels at sparse recovery when sparseness is lower and noise is higher. The Difference Map out-performs the state of the art with reconstruction from random measurements and natural image reconstruction via sparse coding.