Abstract:Reproducibility is a cornerstone of scientific research, enabling validation, extension, and progress. However, the rapidly evolving nature of software and dependencies poses significant challenges to reproducing research results, particularly in fields like adversarial robustness for deep neural networks, where complex codebases and specialized toolkits are utilized. This paper presents a case study of attempting to validate the results on certified adversarial robustness in "SoK: Certified Robustness for Deep Neural Networks" using the VeriGauge toolkit. Despite following the documented methodology, numerous software and hardware compatibility issues were encountered, including outdated or unavailable dependencies, version conflicts, and driver incompatibilities. While a subset of the original results could be run, key findings related to the empirical robust accuracy of various verification methods proved elusive due to these technical obstacles, as well as slight discrepancies in the test results. This practical experience sheds light on the reproducibility crisis afflicting adversarial robustness research, where a lack of reproducibility threatens scientific integrity and hinders progress. The paper discusses the broader implications of this crisis, proposing potential solutions such as containerization, software preservation, and comprehensive documentation practices. Furthermore, it highlights the need for collaboration and standardization efforts within the research community to develop robust frameworks for reproducible research. By addressing the reproducibility crisis head-on, this work aims to contribute to the ongoing discourse on scientific reproducibility and advocate for best practices that ensure the reliability and validity of research findings within not only adversarial robustness, but security and technology research as a whole.