Abstract:In the prevailing convergence of traditional infrastructure-based deployment (i.e., Telco and industry operational networks) towards evolving deployments enabled by 5G and virtualization, there is a keen interest in elaborating effective security controls to protect these deployments in-depth. By considering key enabling technologies like 5G and virtualization, evolving networks are democratized, facilitating the establishment of point presences integrating different business models ranging from media, dynamic web content, gaming, and a plethora of IoT use cases. Despite the increasing services provided by evolving networks, many cybercrimes and attacks have been launched in evolving networks to perform malicious activities. Due to the limitations of traditional security artifacts (e.g., firewalls and intrusion detection systems), the research on digital forensic data analytics has attracted more attention. Digital forensic analytics enables people to derive detailed information and comprehensive conclusions from different perspectives of cybercrimes to assist in convicting criminals and preventing future crimes. This chapter presents a digital analytics framework for network anomaly detection, including multi-perspective feature engineering, unsupervised anomaly detection, and comprehensive result correction procedures. Experiments on real-world evolving network data show the effectiveness of the proposed forensic data analytics solution.
Abstract:Content delivery networks (CDNs) provide efficient content distribution over the Internet. CDNs improve the connectivity and efficiency of global communications, but their caching mechanisms may be breached by cyber-attackers. Among the security mechanisms, effective anomaly detection forms an important part of CDN security enhancement. In this work, we propose a multi-perspective unsupervised learning framework for anomaly detection in CDNs. In the proposed framework, a multi-perspective feature engineering approach, an optimized unsupervised anomaly detection model that utilizes an isolation forest and a Gaussian mixture model, and a multi-perspective validation method, are developed to detect abnormal behaviors in CDNs mainly from the client Internet Protocol (IP) and node perspectives, therefore to identify the denial of service (DoS) and cache pollution attack (CPA) patterns. Experimental results are presented based on the analytics of eight days of real-world CDN log data provided by a major CDN operator. Through experiments, the abnormal contents, compromised nodes, malicious IPs, as well as their corresponding attack types, are identified effectively by the proposed framework and validated by multiple cybersecurity experts. This shows the effectiveness of the proposed method when applied to real-world CDN data.
Abstract:With the growing demand for data connectivity, network service providers are faced with the task of reducing their capital and operational expenses while simultaneously improving network performance and addressing the increased connectivity demand. Although Network Function Virtualization (NFV) has been identified as a solution, several challenges must be addressed to ensure its feasibility. In this paper, we address the Virtual Network Function (VNF) placement problem by developing a machine learning decision tree model that learns from the effective placement of the various VNF instances forming a Service Function Chain (SFC). The model takes several performance-related features from the network as an input and selects the placement of the various VNF instances on network servers with the objective of minimizing the delay between dependent VNF instances. The benefits of using machine learning are realized by moving away from a complex mathematical modelling of the system and towards a data-based understanding of the system. Using the Evolved Packet Core (EPC) as a use case, we evaluate our model on different data center networks and compare it to the BACON algorithm in terms of the delay between interconnected components and the total delay across the SFC. Furthermore, a time complexity analysis is performed to show the effectiveness of the model in NFV applications.