Abstract:The problem of pure exploration in Markov decision processes has been cast as maximizing the entropy over the state distribution induced by the agent's policy, an objective that has been extensively studied. However, little attention has been dedicated to state entropy maximization under partial observability, despite the latter being ubiquitous in applications, e.g., finance and robotics, in which the agent only receives noisy observations of the true state governing the system's dynamics. How can we address state entropy maximization in those domains? In this paper, we study the simple approach of maximizing the entropy over observations in place of true latent states. First, we provide lower and upper bounds to the approximation of the true state entropy that only depends on some properties of the observation function. Then, we show how knowledge of the latter can be exploited to compute a principled regularization of the observation entropy to improve performance. With this work, we provide both a flexible approach to bring advances in state entropy maximization to the POMDP setting and a theoretical characterization of its intrinsic limits.
Abstract:Recent works have studied *state entropy maximization* in reinforcement learning, in which the agent's objective is to learn a policy inducing high entropy over states visitation (Hazan et al., 2019). They typically assume full observability of the state of the system, so that the entropy of the observations is maximized. In practice, the agent may only get *partial* observations, e.g., a robot perceiving the state of a physical space through proximity sensors and cameras. A significant mismatch between the entropy over observations and true states of the system can arise in those settings. In this paper, we address the problem of entropy maximization over the *true states* with a decision policy conditioned on partial observations *only*. The latter is a generalization of POMDPs, which is intractable in general. We develop a memory and computationally efficient *policy gradient* method to address a first-order relaxation of the objective defined on *belief* states, providing various formal characterizations of approximation gaps, the optimization landscape, and the *hallucination* problem. This paper aims to generalize state entropy maximization to more realistic domains that meet the challenges of applications.