Abstract:Smartphones and wearable devices are fast growing technologies that, in conjunction with advances in wireless sensor hardware, are enabling ubiquitous sensing applications. Wearables are suitable for indoor and outdoor scenarios, can be placed on many parts of the human body and can integrate a large number of sensors capable of gathering physiological and behavioral biometric information. Here, we are concerned with gait analysis systems that extract meaningful information from a user's movements to identify anomalies and changes in their walking style. The solution that is put forward is subject-specific, as the designed feature extraction and classification tools are trained on the subject under observation. A smartphone mounted on an ad-hoc made chest support is utilized to gather inertial data and video signals from its built-in sensors and rear-facing camera. The collected video and inertial data are preprocessed, combined and then classified by means of a Recurrent Neural Network (RNN) based Sequence-to-Sequence (Seq2Seq) model, which is used as a feature extractor, and a following Convolutional Neural Network (CNN) classifier. This architecture provides excellent results, being able to correctly assess anomalies in 100% of the cases, for the considered tests, surpassing the performance of support vector machine classifiers.
Abstract:We consider the problem of power demand forecasting in residential micro-grids. Several approaches using ARMA models, support vector machines, and recurrent neural networks that perform one-step ahead predictions have been proposed in the literature. Here, we extend them to perform multi-step ahead forecasting and we compare their performance. Toward this end, we implement a parallel and efficient training framework, using power demand traces from real deployments to gauge the accuracy of the considered techniques. Our results indicate that machine learning schemes achieve smaller prediction errors in the mean and the variance with respect to ARMA, but there is no clear algorithm of choice among them. Pros and cons of these approaches are discussed and the solution of choice is found to depend on the specific use case requirements. A hybrid approach, that is driven by the prediction interval, the target error, and its uncertainty, is then recommended.