Abstract:In the last decade, autonomous navigation for roboticshas been leveraged by deep learning and other approachesbased on machine learning. These approaches have demon-strated significant advantages in robotics performance. Butthey have the disadvantage that they require a lot of data toinfer knowledge. In this paper, we present an algorithm forbuilding 2D maps with attributes that make them useful fortraining and testing machine-learning-based approaches.The maps are based on dungeons environments where sev-eral random rooms are built and then those rooms are con-nected. In addition, we provide a dataset with 10,000 mapsproduced by the proposed algorithm and a description withextensive information for algorithm evaluation. Such infor-mation includes validation of path existence, the best path,distances, among other attributes. We believe that thesemaps and their related information can be very useful forrobotics enthusiasts and researchers who want to test deeplearning approaches. The dataset is available athttps://github.com/gbriel21/map2D_dataSet.git