Abstract:Analog circuit design can be considered as an optimization problem with the targeted circuit specifications as constraints. When stringent circuit specifications are considered, it is desired to have an optimization methodology that adapts well to heavily constrained search spaces. To this end, we propose a novel Bayesian optimization algorithm with a tiered ensemble of acquisition functions and demonstrate its considerable application potential for analog circuit design automation. Our method is the first to introduce the concept of multiple dominance among acquisition functions, allowing the search for the optimal solutions to be effectively bounded \emph{within} the predicted set of feasible solutions in a constrained search space. This has resulted in a significant reduction in constraint violations by the candidate solutions, leading to better-optimized designs within tight computational budgets. The methodology is validated in gain and area optimization of a two-stage Miller compensated operational amplifier in a 65 nm technology. In comparison to robust baselines and state-of-the-art algorithms, this method reduces constraint violations by up to 38% and improves the target objective by up to 43%. The source code of our algorithm is made available at https://github.com/riarashid/TRACE.
Abstract:An automated sizing approach for analog circuits using evolutionary algorithms is presented in this paper. A targeted search of the search space has been implemented using a particle generation function and a repair-bounds function that has resulted in faster convergence to the optimal solution. The algorithms are tuned and modified to converge to a better optimal solution with less standard deviation for multiple runs compared to standard versions. Modified versions of the artificial bee colony optimisation algorithm, genetic algorithm, grey wolf optimisation algorithm, and particle swarm optimisation algorithm are tested and compared for the optimal sizing of two operational amplifier topologies. An extensive performance evaluation of all the modified algorithms showed that the modifications have resulted in consistent performance with improved convergence for all the algorithms. The implementation of parallel computation in the algorithms has reduced run time. Among the considered algorithms, the modified artificial bee colony optimisation algorithm gave the most optimal solution with consistent results across multiple runs.