Abstract:Foundation models are a promising path toward general-purpose and user-friendly robots. The prevalent approach involves training a generalist policy that, like a reinforcement learning policy, uses observations to output actions. Although this approach has seen much success, several concerns arise when considering deployment and end-user interaction with these systems. In particular, the lack of modularity between tasks means that when model weights are updated (e.g., when a user provides feedback), the behavior in other, unrelated tasks may be affected. This can negatively impact the system's interpretability and usability. We present an alternative approach to the design of robot foundation models, Diffusion for Policy Parameters (DPP), which generates stand-alone, task-specific policies. Since these policies are detached from the foundation model, they are updated only when a user wants, either through feedback or personalization, allowing them to gain a high degree of familiarity with that policy. We demonstrate a proof-of-concept of DPP in simulation then discuss its limitations and the future of interpretable foundation models.
Abstract:It is crucial that users are empowered to use the functionalities of a robot to creatively solve problems on the fly. A user who has access to a Reinforcement Learning (RL) based robot may want to use the robot's autonomy and their knowledge of its behavior to complete new tasks. One way is for the user to take control of some of the robot's action space through teleoperation while the RL policy simultaneously controls the rest. However, an out-of-the-box RL policy may not readily facilitate this. For example, a user's control may bring the robot into a failure state from the policy's perspective, causing it to act in a way the user is not familiar with, hindering the success of the user's desired task. In this work, we formalize this problem and present Imaginary Out-of-Distribution Actions, IODA, an initial algorithm for addressing that problem and empowering user's to leverage their expectation of a robot's behavior to accomplish new tasks.