Abstract:The diagnosis of diabetic retinopathy, which relies on fundus images, faces challenges in achieving transparency and interpretability when using a global classification approach. However, segmentation-based databases are significantly more expensive to acquire and combining them is often problematic. This paper introduces a novel method, termed adversarial style conversion, to address the lack of standardization in annotation styles across diverse databases. By training a single architecture on combined databases, the model spontaneously modifies its segmentation style depending on the input, demonstrating the ability to convert among different labeling styles. The proposed methodology adds a linear probe to detect dataset origin based on encoder features and employs adversarial attacks to condition the model's segmentation style. Results indicate significant qualitative and quantitative through dataset combination, offering avenues for improved model generalization, uncertainty estimation and continuous interpolation between annotation styles. Our approach enables training a segmentation model with diverse databases while controlling and leveraging annotation styles for improved retinopathy diagnosis.
Abstract:Reliable automatic diagnosis of Diabetic Retinopathy (DR) and Macular Edema (ME) is an invaluable asset in improving the rate of monitored patients among at-risk populations and in enabling earlier treatments before the pathology progresses and threatens vision. However, the explainability of screening models is still an open question, and specifically designed datasets are required to support the research. We present MAPLES-DR (MESSIDOR Anatomical and Pathological Labels for Explainable Screening of Diabetic Retinopathy), which contains, for 198 images of the MESSIDOR public fundus dataset, new diagnoses for DR and ME as well as new pixel-wise segmentation maps for 10 anatomical and pathological biomarkers related to DR. This paper documents the design choices and the annotation procedure that produced MAPLES-DR, discusses the interobserver variability and the overall quality of the annotations, and provides guidelines on using the dataset in a machine learning context.