Abstract:This paper presents a case study on how to process cooking recipes (and more generally, how-to instructions) in a way that makes it possible for a robot or artificial cooking assistant to support human chefs in the kitchen. Such AI assistants would be of great benefit to society, as they can help to sustain the autonomy of aging adults or people with a physical impairment, or they may reduce the stress in a professional kitchen. We propose a novel approach to computational recipe understanding that mimics the human sense-making process, which is narrative-based. Using an English recipe for almond crescent cookies as illustration, we show how recipes can be modelled as rich narrative structures by integrating various knowledge sources such as language processing, ontologies, and mental simulation. We show how such narrative structures can be used for (a) dealing with the challenges of recipe language, such as zero anaphora, (b) optimizing a robot's planning process, (c) measuring how well an AI system understands its current tasks, and (d) allowing recipe annotations to become language-independent.
Abstract:Despite enormous progress in Natural Language Processing (NLP), our field is still lacking a common deep semantic representation scheme. As a result, the problem of meaning and understanding is typically sidestepped through more simple, approximative methods. This paper argues that in order to arrive at such a scheme, we also need a common modelling scheme. It therefore introduces MetaSRL++, a uniform, language- and modality-independent modelling scheme based on Semantic Graphs, as a step towards a common representation scheme; as well as a method for defining the concepts and entities that are used in these graphs. Our output is twofold. First, we illustrate MetaSRL++ through concrete examples. Secondly, we discuss how it relates to existing work in the field.