Abstract:Vision-guided robot grasping methods based on Deep Neural Networks (DNNs) have achieved remarkable success in handling unknown objects, attributable to their powerful generalizability. However, these methods with this generalizability tend to recognize the human hand and its adjacent objects as graspable targets, compromising safety during Human-Robot Interaction (HRI). In this work, we propose the Quality-focused Active Adversarial Policy (QFAAP) to solve this problem. Specifically, the first part is the Adversarial Quality Patch (AQP), wherein we design the adversarial quality patch loss and leverage the grasp dataset to optimize a patch with high quality scores. Next, we construct the Projected Quality Gradient Descent (PQGD) and integrate it with the AQP, which contains only the hand region within each real-time frame, endowing the AQP with fast adaptability to the human hand shape. Through AQP and PQGD, the hand can be actively adversarial with the surrounding objects, lowering their quality scores. Therefore, further setting the quality score of the hand to zero will reduce the grasping priority of both the hand and its adjacent objects, enabling the robot to grasp other objects away from the hand without emergency stops. We conduct extensive experiments on the benchmark datasets and a cobot, showing the effectiveness of QFAAP. Our code and demo videos are available here: https://github.com/clee-jaist/QFAAP.
Abstract:This paper proposes a novel federated learning approach for improving IoT network intrusion detection. The rise of IoT has expanded the cyber attack surface, making traditional centralized machine learning methods insufficient due to concerns about data availability, computational resources, transfer costs, and especially privacy preservation. A semi-supervised federated learning model was developed to overcome these issues, combining the Shrink Autoencoder and Centroid one-class classifier (SAE-CEN). This approach enhances the performance of intrusion detection by effectively representing normal network data and accurately identifying anomalies in the decentralized strategy. Additionally, a mean square error-based aggregation algorithm (MSEAvg) was introduced to improve global model performance by prioritizing more accurate local models. The results obtained in our experimental setup, which uses various settings relying on the N-BaIoT dataset and Dirichlet distribution, demonstrate significant improvements in real-world heterogeneous IoT networks in detection accuracy from 93.98$\pm$2.90 to 97.30$\pm$0.49, reduced learning costs when requiring only 50\% of gateways participating in the training process, and robustness in large-scale networks.