Abstract:Causal effect estimation under observational studies is challenging due to the lack of ground truth data and treatment assignment bias. Though various methods exist in literature for addressing this problem, most of them ignore multi-dimensional treatment information by considering it as scalar, either continuous or discrete. Recently, certain works have demonstrated the utility of this rich yet complex treatment information into the estimation process, resulting in better causal effect estimation. However, these works have been demonstrated on either graphs or textual treatments. There is a notable gap in existing literature in addressing higher dimensional data such as images that has a wide variety of applications. In this work, we propose a model named NICE (Network for Image treatments Causal effect Estimation), for estimating individual causal effects when treatments are images. NICE demonstrates an effective way to use the rich multidimensional information present in image treatments that helps in obtaining improved causal effect estimates. To evaluate the performance of NICE, we propose a novel semi-synthetic data simulation framework that generates potential outcomes when images serve as treatments. Empirical results on these datasets, under various setups including the zero-shot case, demonstrate that NICE significantly outperforms existing models that incorporate treatment information for causal effect estimation.
Abstract:We study the problem of estimation of Individual Treatment Effects (ITE) in the context of multiple treatments and networked observational data. Leveraging the network information, we aim to utilize hidden confounders that may not be directly accessible in the observed data, thereby enhancing the practical applicability of the strong ignorability assumption. To achieve this, we first employ Graph Convolutional Networks (GCN) to learn a shared representation of the confounders. Then, our approach utilizes separate neural networks to infer potential outcomes for each treatment. We design a loss function as a weighted combination of two components: representation loss and Mean Squared Error (MSE) loss on the factual outcomes. To measure the representation loss, we extend existing metrics such as Wasserstein and Maximum Mean Discrepancy (MMD) from the binary treatment setting to the multiple treatments scenario. To validate the effectiveness of our proposed methodology, we conduct a series of experiments on the benchmark datasets such as BlogCatalog and Flickr. The experimental results consistently demonstrate the superior performance of our models when compared to baseline methods.