Abstract:In this article, we investigate symmetry properties of distributed systems of mobile robots. We consider a swarm of $n\in\mathbb{N}$ robots in the $\mathcal{OBLOT}$ model and analyze their collective $\mathcal{F}$sync dynamics using of equivariant dynamical systems theory. To this end, we show that the corresponding evolution function commutes with rotational and reflective transformations of $\mathbb{R}^2$. These form a group that is isomorphic to $\mathbf{O}(2) \times S_n$, the product group of the orthogonal group and the permutation on $n$ elements. The theory of equivariant dynamical systems is used to deduce a hierarchy along which symmetries of a robot swarm can potentially increase following an arbitrary protocol. By decoupling the Look phase from the Compute and Move phases in the mathematical description of an LCM cycle, this hierarchy can be characterized in terms of automorphisms of connectivity graphs. In particular, we find all possible types of symmetry increase, if the decoupled Compute and Move phase is invertible. Finally, we apply our results to protocols which induce state-dependent linear dynamics, where the reduced system consisting of only the Compute and Move phase is linear.
Abstract:In the general pattern formation (GPF) problem, a swarm of simple autonomous, disoriented robots must form a given pattern. The robots' simplicity imply a strong limitation: When the initial configuration is rotationally symmetric, only patterns with a similar symmetry can be formed [Yamashita, Suzyuki; TCS 2010]. The only known algorithm to form large patterns with limited visibility and without memory requires the robots to start in a near-gathering (a swarm of constant diameter) [Hahn et al.; SAND 2024]. However, not only do we not know any near-gathering algorithm guaranteed to preserve symmetry but most natural gathering strategies trivially increase symmetries [Castenow et al.; OPODIS 2022]. Thus, we study near-gathering without changing the swarm's rotational symmetry for disoriented, oblivious robots with limited visibility (the OBLOT-model, see [Flocchini et al.; 2019]). We introduce a technique based on the theory of dynamical systems to analyze how a given algorithm affects symmetry and provide sufficient conditions for symmetry preservation. Until now, it was unknown whether the considered OBLOT-model allows for any non-trivial algorithm that always preserves symmetry. Our first result shows that a variant of Go-to-the-Average always preserves symmetry but may sometimes lead to multiple, unconnected near-gathering clusters. Our second result is a symmetry-preserving near-gathering algorithm that works on swarms with a convex boundary (the outer boundary of the unit disc graph) and without holes (circles of diameter 1 inside the boundary without any robots).